Integrative Properties of Radial Oblique Dendrites in Hippocampal CA1 Pyramidal Neurons
نویسندگان
چکیده
Although radial oblique dendrites are a major synaptic input site in CA1 pyramidal neurons, little is known about their integrative properties. We have used multisite two-photon glutamate uncaging to deliver different spatiotemporal input patterns to single branches while simultaneously recording the uncaging-evoked excitatory postsynaptic potentials and local Ca2+ signals. Asynchronous input patterns sum linearly in spite of the spatial clustering and produce Ca2+ signals that are mediated by NMDA receptors (NMDARs). Appropriately timed and sized input patterns ( approximately 20 inputs within approximately 6 ms) produce a supralinear summation due to the initiation of a dendritic spike. The Ca2+ signals associated with synchronous input were larger and mediated by influx through both NMDARs and voltage-gated Ca2+ channels (VGCCs). The oblique spike is a fast Na+ spike whose duration is shaped by the coincident activation of NMDAR, VGCCs, and transient K+ currents. Our results suggest that individual branches can function as single integrative compartments.
منابع مشابه
Distinguishing Linear vs. Non-Linear Integration in CA1 Radial Oblique Dendrites: It’s about Time
It was recently shown that multiple excitatory inputs to CA1 pyramidal neuron dendrites must be activated nearly simultaneously to generate local dendritic spikes and supralinear responses at the soma; even slight input desynchronization prevented local spike initiation (Gasparini and Magee, 2006; Losonczy and Magee, 2006). This led to the conjecture that CA1 pyramidal neurons may only express ...
متن کاملNormalization of Ca2+ signals by small oblique dendrites of CA1 pyramidal neurons.
Oblique dendrites of CA1 pyramidal neurons predominate in stratum radiatum and receive approximately 80% of the synaptic input from Schaffer collaterals. Despite this fact, most of our understanding of dendritic signal processing in these neurons comes from studies of the main apical dendrite. Using a combination of Ca2+ imaging and whole-cell recording techniques in rat hippocampal slices, we ...
متن کاملElectrophysiological study of amygdale-induced changes in the excitability of CA1 hippocampal pyramidal neurons in male adult rats
Introduction: Many studies have shown that amygdala kindling produces synaptic potentiation by induction of changes in the neuronal electrophysiological properties and inward currents both in epileptic focus and in the areas which are in connection with the epileptic focus and have important role in seizure development and progression such as hippocampal CA1 region. However, cellular mechani...
متن کاملEffects of resveratrol on intrinsic neuronal properties of CA1 pyramidal neurons in rat hippocampal slices
Introduction: Resveratrol (3,5,4-trihydroxystilbene) a non-flavonoid polyphenol found in some plants like grapes, peanuts and pomegranates, possesses a wide range of biological effects. Evidence indicates that resveratrol has beneficial effects on nervous system to induce neuroprotection. However, the cellular mechanisms of the effects are not fully determined. In the present study, the cellula...
متن کاملSignal propagation in oblique dendrites of CA1 pyramidal cells.
The electrophysiological properties of the oblique branches of CA1 pyramidal neurons are largely unknown and very difficult to investigate experimentally. These relatively thin dendrites make up the majority of the apical tree surface area and constitute the main target of Schaffer collateral axons from CA3. Their electrogenic properties might have an important role in defining the computationa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuron
دوره 50 شماره
صفحات -
تاریخ انتشار 2006